VACCELERATOR & B i 25 F it

R L ES

B AEAREFEHRMN
Institute of Oceanography

National Taiwan University

BReEf-RAEESTL

hEREBEL+AFE TR

ey I S e B e e TR Be T e e TR e e 1
SoMBEEEBRB. o oo s b e e e e s e s e e oA 2
gt Lo R S R S S e 2
Ex=BBW. 00 ol iei e e e 2
(=R . <« ¢ - ¢ i v e e e s e e s 2
(ZIMEBREB-BEB. . . . ¢ o v o0 v 0 0 0 n 3
(EVFRBIEZER. - . ot s e atae e 6
=« M3¥ B FORTRAN £l VAX FORTRAN ZAR. 9

0 ~ VAX FORTRAN A S MEH FORTRAN Xz BHEEE, 12

T SRTEEIE o das TE e e T e W e e 12
B VARINE B BEIB. & & 2 w5 00 & % oo ® s w e oy w e 13
E~RAIBITIEEZEAA. o -« ¢ ¢ v 0 0 s 0 o 14
WaMMESEIEEIE. - o v 0 v e s e e e s 16
I N S R DRSS e TN T e oy 17
Fidk— . MEBERBBEAE. . . ¢ ¢« v v ¢ ¢ e o n coa s a0 18

PR . SRR . o o o o e e e S b 22

—_— i[g

vax vMS B MNERAEERITEAEZENEARE aRETE
BEMEREE -EW - REBPLZHEREIRHEREAKEWE
TEERBERERMN—7% Microvax [Bl E-BTEAESE
BrHEEEHDAREEAENRARE REPCMETRABSE
B Avalon & if /% 71 % & 2K £ 38 50 h0 # &% » Vaccelerator AP/30-
BEEM Microvax I E E e —HENAH Ap/308fTRELE Micro
VAX T SN E# FBaiTHRTHEAS o BI{fESR DECHIEmAR B E
VAX 8800 EAEMLL - hAE LWEE -

Vaccelerator2 F ki 4 (RIsC) W@ BHERAERM
E i o TAE S M CPUTEfE 32 o P B5E H W 1 & & E ¥ 9] jE 20 MFlops
cHUFHENS ERANTFEARERERH - —RMEEFRE NN
MBI g FEHE (array processor) 7E{E F BF 7 76 F2 2 ot 1R b %R Bk 1) B
% (subroutine) » Jii Vaccelerator IR EEL{EVAX TiE L&
THBREKXEHEIF (Compile) BIT o H LB F A REEVAXERR k&
IR » MITLIA A vaccelerator® ¥ & #F ©

S KEEHNENMicro VAX 1 B 8o f) vaccelerator AP/30
MESEFESEF KRB ERAEHERREMmR & HIEF &K

HEm{EREMLFAIE - M EMN vaccelerator 2 R (compiler)

£ Fortran-77 compiler Wit S rortranfE A FE A FERLMTE o &
RinEHe & Pascal ZERESHER K » AT EETHR o

FHEMFEMZEMNAEMNE Vaccelerator AP/30 ERAKZER
BIF » HE vAX Fortranfi [al Z & » LI KR IR {EH vaccelerator fY
—HEBER - LIfEA EF A vaccelerator A BM A LEBREFEZNE
PEfER c Tt — S HMBFERBESEESMFHPAMSR - FHMNER
FHEf B Fortran BEX) Run Time Library X B2 H & ABFHE
@ =g] Vaccelerator Operations Manual ©

“_fEHAFEREH

BRABY¥WEMZ Micro vax T EHE LHETHEA vac-
celerator AP/30E T » 4 BB S ACA0O BL ACBO o ACA0O F B ME
fiRAM ZEIERET ACBO {£F 4 vB i RAMGIIERE - ERETEHITEE
H—{EH »r il AR#HEEE °

I ~fERFE
Vaccelerator ff] Fortran {# 73 B VAX Fortran H{ll » H
WA/ (AFortran) #Fi% » B (ALinker) Hif » mi%{EM (RUN) 2k
HITo LTRE—EE285mA forMBEAMNE 2L - WITHH T ¢
$AFOR AAA | RETURN| | # fjAFortranisfRsF » EE 4 AAA. 088
$ALINK AAA | RETURN| ! #BEHALinker’RKi##E » & % AAA exe
$RUN AAA | RETURN| | ERIVAXHIRUNIESRBMIT o
Ll » LRERF MG - |RETURN|{X E ENTER BRRETURNEE » 1" ! “
BEBEFEHEE -
& 1. ER rortran TRE R G o HBEMH & 8 VA Fortran
B A o
ZHITHEMEA RN 54 MAZ ARUNC
3.Library Y2 3 B VAX— 5 » i 0
$ALIB lib ap BAAA, BBB,CCC

I~ —#%xaHAEe
(—) B PERERR A -

Avalon Vaccelerator JhE —#HI B 0-bus B UnibusfyE
BPBEFNOMNESEE CHEEESNPREES (BHTE
H)8 aes100cey) » T {EE NN ERE T ot (Cache Memory Manage-
ment Unit,CMMU, 88200) » /& 4 M fJDRAM o] M} Al vAXTE 0% 28 51 01 —
BREERSENERRD - LEB#VAP TERR -

H-BNva BRAMEr EMESTER20EELENEREE
oMY — B AREHI/O BENER - AREBTRAKRE - BFR
ARD BEFHEMESHER: AERANESRX M ELLvax &
@Ee EREABERRITHAKMENERIES load FIMER L

f£loadfyBEERF A - LFEERRAITVAL BEN P EAFERKTEH
fE o
(Zyhnid & RN Xk -

1l . ACSTAT command :

FERHETHAEESRBEINESNRE @

$ACSTAT | RETURN |
CPU S In Out RSize VSize Utime STime Account Image AM5z MsgC
AP30 0 R 4 0 32 32 0:03.95 0:03 TOM AAR 298 B85

AP30 1 T 20 o 232 232 0:12.19 0:62 RZ0BBCL FEST 785 58
CPU: {5 7R F M b0 85 AP30_OJE hN# SR ACAC - AP30 12 Jill 3 %% ACBO °
5! fistater R running: I R idleo
In,Out : #§ pages f paged in % paged out B H o
RSize,VSize:! #§ real R virtual image fJX/ (in kbytes) o
Utime,STime : #§ user K& System ffJ CPU EFfE
Account : 5 {# Fl # FYIRIE
Image : E{EAEMTHREN -
amsz : JE FH M A B K/ (in bytes) o
MsgeC: fERTARITEAMABEH -

2 . Run-time Options:

LTRMERFIBHBEREM run-time options.
HHAEREFUITHAESR acs_acip Y BUE » BATH IO & &
FokEAEMERMBEERT IR (ES2BETSHER)

Example 1.

$ definef/user acs_acip ¢t | E# acs acip 28

$ run AAA | BMATINE R M FE X ARA . exe

Example 2.

& define/user acs acip as2 | E# acs_acip ZB ¥

$ run AAA | |ATINESF RN AAR.exe
(1) a 88 :

mESEXaTeE TEAREERNET —BEEEYE
(misaligned) MIEN » iRt - fatal error
MIHE c EFAHETRSH RFFISEROHFNEHER
FHEf) trap handler &R » B ¥ performance

3

(2)

(3)

(4)

(5)

PRESE TEEIEISER LEFERNRBTF
f MR/ SYS$ERROR (RIE&H) & o FBHHMNKUERX
ABEEFEEHFNERBEHOTIERAA °

da 28 :

S 8HEE Avalon R reboot Bf » ¥4 Y2 EH W
W o fEvAX BB o B — K ERTIESE - &
BAEHKIEEY reboot + HEPH reboot...HJFAE °
P BB

E2EIRERTREEMESEE -@MES NEWMON
.OUTHY profile §£ o EEHIE Y performanceff] FHrEEK
FI8Bh » 814582 M Operations Manual P.3-11¢
r B8

A iFEN# 2%) rounding mode :

rm ! rounding toward minus infinity

Ip ! rounding toward positive infinity

EZ ! rounding toward zero

rn | rounding to the nearest even number (defaultff)
il 4o =

fdefine//user acs_acip rm
A& {E 0.04768993 — 0.0476899
-0.05981647 = -0.0598165
(Em R K)
t 2
SENTERGKATHER —BIMEASAFELMRER
FEMITER LRIk E - % status RS SS$_DEVALLOC (2
1M2) s ETRERBBUBER T EFHNES LB S —
ERAUATX&EEART WMEBZEERAB LATE A
EREMESSR vaxbf (ERLNESERLEE) &
REASL AT ARMBEATHEES > —EE VA - —{@
B 0% B 5 B L\ (AAA-VAX .exe Ji AAR-AP.exe)R {UE -
R T il R AT ¢

fifn ¢ EXE.COM

$ definefuser acs_acip t

$ RUN AAA AP | ST INGE R R

$ if $STATUS .NE. 2112 then goto done ! 21128 SS$_DEVALLOC
$ RUN AAA VAX ! #{T vAX R
$ done:
£ exit $STATUS
(6) s B8 :

FH Ik 28 B W1 S 4 5 AT AR (6 MO D0 3B o & KRBT AT) VAX
FEEEREMESTHERE BT R ERBHARKGE
HEEAFWAREEAOMNER L - BEEmMAFHIEEER
b AIRRME B _AFPE - HEXCRTRRREN
EFFHBEAMLANT SWHEAFTEME ACA (HBME
raM) HY
$define acs acip sl
EACAOFE R »r UERXBEMNRTFIKE o
FEIEACRO (4MB RAM) HI :
$define acs acip s2

(7) v B8

N EkSHEMESAHEFEENAEBALRER

$ define acs acip vz | SREMEAEB1L

H:ERTHLEI BAESAERBHEE o

Vii i EMESEEMBEIERT o BED) waiting AE ©

v2: Fl W5 B8 FE (assigning) » fFEY (accessing): B
3TF (opening) MEFHMIAE °

v3: (P Bopening MNEBR EMPTEME o

v I BE—ENESRPRLAMEEAXRAE °

vs: Efli va MARE R A ZER ©

ve: I EAMEREFRNBFHEAREL ©

V7: B —{E& B parent. M » FHAAE vax EINE
R EBRAAL o

ve: @Y parent, FRRAITHEERE LETRH -

3. BHAZEEMHNGE :

BEEMES FRTBERE gL ReEsi@® (buffered)
EMEST THEAATEEHHSHEEPOHR SR EVAX EPH o
HRNMEERVFTEH —$RE TRERRTEL r IS HETE
BEPH « LITAAFIIES o] it IO Re N ¢

$ define acs nobuffer 1 | {EEEHHE X
$ RUN RAAA ' AT EBER
$ deassign acs nobuffer IR EEEED

547 a0 R ALY Hbuffering Z IHAE » BUAT I BE G B4R o
(Z)P EBHEZEZK
1. S — A0 &S h0 R S i B By S B s VAX T R O R OK R
B e Rfivax R E _MAFEMceu T ROABERE=R
£ o
B4k bvax Fr{EAMEE £ R7ERE DEC floating point
T AN 3% 2% A @ A A9 B 8 IEEE Standard floating point» FFLLFRAH
ARE binary BAMEHE —TEZTEIHHEMOERMYE - RHRY
EHERBEBAS MEREAHERMDN-
2. —RERN - FRHE TEEESEMNKE FortranfNIE
HELEFEWSHE 1,7, N, RENSNE DDWRGETRE -
FRULA 2O HrFomat FAER - EFKEENRIEBRAAR—M
EWEEEyg tRATHE AEERUEHABREmMEIER
| ELEEMRA SEBEENE SRV ERENTEMERTH
FIBil o ENKBEEZE TLUMEDERDEHKL MERXFHE
ITHERNEEAN formato
FENNNEE@ERIThEE > AEEBFEEME avalon : fnative

$ AFOR ARA ! @4 AAA.oBS

$ ALINK AAA,avalon:fnative ! E4% ArA.exe

$ RUN Ana ! ®ITHERX
ERAGESOFERER » TR NESMIEX o 0

acs_cvtvzaf(a) ! A EffscBm 3 8% (single precision)

acs cvtvzad(A) ! A BTk HAYF BB (double precision)
Operations Manualfj4-1 Hh 5 HF +EBETHRFANHBEL o

3. FEBEEZ =R :

Length Bits in Bits in Smallest Largest
(bits) Exponent Mantissa Number Number
Single Precision
e 39
Avalon : 32 a8 23 + 0.12x10 + 0.34x%10
-38 39
VAKX 32 3 23 + 0.29x10 + 0.17=10
Double Precision
-38 39
VAY I}_fln:xating 64 8 55 + 0.29x10 + 0.17x10
-307 309
Avalon B4 b iy 52 + G.22%10 + 0.18x10
: -308 308
VAX G _flecating 64 11 52 + 0.56x10 + 0.90x10

4. Wil BE s =R

—EEXNERA AT ERANERBEEFRITHE 2 &1
RIMERAE » sTHL TA R Bk :

(LIMR=RB D EELAN EEEFELFENESKES
TIEHEMAERNERLEEETRAFEERE o

(2N RZEEA » THAFRATFEL rounding moder BlE#
acs_acip My r 28 (£ U#mode) °
#l : $ define acs acip m

R4 8 mode MILEMBSREFBRANZRE » hETEHE
BT Fprecision HRAMME o EESRAVAX BTN roun-
ding mode RLBRMITHAEE AN EE « BRI FE H MY lincdeF iz H
HAMER WERZLREHBEARM Kt - 1 :

LABKERY (HEXAMFN » M EfEENax = bx) A
AMEEEENSESR SR EESRNEE RE2FR L
ELRENRE o

2 BRAPITHEEAFREANG R X —double precisionBi il — &
o WX+ o AB VAX G_floating B N# B double precision
B{HEE VAX D floating MISE@E 4B £ - PFLLfh{M AEiNE VAX D _floating

=307

— R EEK (FEMESZSHRIR +0.22x10 [vaX D_floating
-a8
B +0.29x10) o
3.EEVEMERE vax D floating # 55 bitsf) mantissa
fi VAX ¢ floating B pE B 2 F 52 bitsffymantissae
R ERESENERHEIN TUERFHAANER (B
Emew}%MHHGJMﬂQOﬁﬁﬂm@ﬂerﬁﬁﬂﬁw
TRMESATRAVA ATFENERKEEL SRR TERBUE

EZ=RMAME
il : $For/G_FLOATING AAA ! {§F§ G _Floating {2 B3
SLINK ARR ! compilec
$RUN AAR

= - ¥R FORTRAN B VAX FORTRAN Z - [d

I Fortran £ VAX Fortran WEMWMZEMEARA K@
H A #B {3 @) VAX Fortran system subroutinefE il £ FHEH X -
MEBEFEEBNEBEXIBM system call» o[F4 system manager #§
HinA o FHIMS— Nk Fortran R XF|MIEE ¢
1. BB VAX Frotran BBk A - Hli0 ¢
10 Format (1x, I<m>.<n>) AW R - BE A M
BB Fortran BR{MEMEIER aforgvisetup HMEIEH LIE o
HinE vax EB : write (6,10) A
10 Format (1X,'RESULT=', F<£12-1I>.<I>)
R
Character*200 AFOREVFSETUP , FMT
FMT=AFOR$VFSERUP('1X,"RESULT=" ,F<12-I>.<I>',12-1I,1I)
write(6,FMT) A
M. AFOR$VFSETUP 1 f] LAfHvAX BA RN » HAGEHEREXMN obj
FEBL AVALON:ACS.OLE R ##& (LINK) o
2. MEB fortran F I XI® structure EEHMIERE » FTLL
BEFEEE structure E X EH M - HlintE vax B :
STRUCTURE
integer setl,setZ/2/
real datal/3.0/,data2/4.0/
END STRUCTURE
HHUB
STRUCTRUE /struc/
integer setl,setl
real datal,dataZ
ENDSTRUCTURE
struc.sefi=2
struc.datal=3.0

struc.data2=4.0

3. BAMARECORDME S » MNE BT REEZR —RECORDEEHN A MW
(il 4~ [6] B record e
FlanfE vAX FEX P :
RECORD [/ STEUCT__I,-’RI e STRUCT_2 JR2Z
ARE
RECORD /[STRUCT__].;”RI
RECORD /STRUCT 2/R2
4 . 7 HE A ISHFTH] Integer*2Z & F :
Mi#E R Fortran 7F & P integer*2) ISHFT IISHFTRIFE X (func-
tion) B » MR\ RAMB(MEEH) BEERNBR W arithmetic
shifts » [ff A &2 logical shiftse PFLL7E(E AN 358F » A E W
i ISHFT KR integer*2 HYBL{H » B A E WM IISHFTREEn
fER RENEE-
il : integer*2 ISHFT,Temp
Temp=ISHFT(-2) | arithmetiec shift
il :+ integer*2 IISHFT,Temp
Temp=IISHFT(-2) ! arithmetic shift
fl = integer*4 ISHFT,Temp
Temp=ISHFT(-3) ! leogical shift
Temp=ISHFT(3) ! logical shift
5. ERAPEMTMERAR » MEHfortran FEJFEH BN
B Ln# E K
IF (1.0+tiny .eq. 1.0) THEN
B8k IF (tiny .eq. 0.0) THEN
s IE IR WA B{# (infintely precise number) R £IE
R BERENMRAERAFTKARER TR tinyN FRBRETZIHEEER
B - SERAS ErE A o AR ILAIE - 7T {E]/ NOOPTIMIZER) qualifer
REBEX - fldn :
FAFOR/NOOPTIMIZE AAA
FALINK AAR
$RUN AAR

10

6 . % {F fj AFORTRAN COMPILER X COMPILE FE2 R BF » & #F I E /XOPTIONS=479
i3 Equalifer (EAAMLTTLL) » 40
$ATOR/XOPTIONS=479 AAMA
$ALINK AAR
$RUN ARA
HERATLEBREREMNEE » RFEE B[Vaccelerator
Operations Manual 5-7H ¢
7. 7£ ALINKER By E#£EH b » ZEFE{l vAX LINKER fy /LIB/ B
INCLUDE/FTH » FREIE R AR EHE X —AH ALIBRARY B HKE
libraryilid » TEEBHAEREEE - B EHMME Fin :
$ALINK AAA,BEB.881b ' 44 AAA.o88E1 BEB.8S81b(HAJE)ER
| 7R e BLA T 5 R A
$ALINK AAA.BBB/LIEB ! §%381!
8. BRHIIMEFE :

Avalonfll i 2% VAX
objct file XXX .88 XXX .obj
| library file X .88lb ¥ .0LB

9. BMNNES libraryIh gE
ALIBf) 2047 3 fE {18 » AFORK ALINKfY o FE 1 fR18 - PrLLE WL TR 38
BEEHWL o

1 0. Hfhfl AFOR» ALINK » ALIB+» Avalon RX88 debuger » Avalcn

MXB8 Assember Mquaifierr» W2 [Vaccelerator Operations Manual
FItHEBR B E -

» VAX FORTRAN 2 i &# ¥ VACCELERATOR FORTRAN ZAHEER

I ~ 53T iR &5
ESENEREAENES LE S -BUHE— - TAEE
AR M A R EERIE - DERAHREHRG{EMHAvalon debuger
$ AFOR/DEBUG=TRACEBACK/CHECK=BOUNDS AAA
ARKTMAESNHEIEFEEE LB - BE2EFHIA LS
fidh i o SR RAATEmMME - BT H X EHcompile :
$AFOR/XOPTTION=479 AAA | FEPHEIHABET
(—)AFortran KR EBRMEEHAE :
(1) Gap left in common block due to alignment rules
% kwarning B LI BEE - HEEMES Fortran EXELER
VAX Fortranf@ & — A EEFI A common block» H| U] 7# compile
B N A /XCPTIONS=B9f1:E B 1 o
(2) Illegal GOTO in locp
HEFTEAERZR BEEAPH cO0rC loop EMERT
FORTRAN-77 standard7 ¢ LI TR —H&ZEMEFAEHH F » LA
HEgEHE =

Do 10
Gote 10 | e GotoB 1~ & ik
Do 10

10 continue

LMK BEEAR:
e 1 : B 2 ¢
Do 10 Do 10
Goto 10 Goto 10
18 7 LRI Do 40
...... 20 continue
Enddo 10 continue

10 continue

12

(Z)SERAAE » M .c88fE R T X *
{1) Error in ccmplex constant:
HIREA S EE R PR HYdo loop Kt outputhy 2 B 15 9K IE &2 ¢
MO » B0 ¢ write (*.*) ((X(I) ,¥(I)),I=1,N)
ARG EHROERESE - 0T ¢
write (*.*),(X(I),¥(I),I=1,N)
{2) Internal compiler error (or Compiler Crash)!
N4 T4 FAABR » FAvalon Fortran Compilerd fifj 6
E L > 5f flavalonZ: B EAE ©
(3) Multiple initializaticon:

ERER—EZA FIRARRES EEBAELTH
—RAtEE (#H R common block) ~ AR F LA HERE K Ccompile
EHEHLES HERIEFEESHNRY LMK EFESENH
oo

(4) out of Memory

HEER TR INE 83 compiler B HE BN EELIELR
T ¢ i system managerjf JH:@a% W) swap file ZERJIK » E ¥ B
R R A !

(SIHMAERREEHAE & HEVAX Frotran—# »

I ~ AT.INK E& ALIR
Fl ALINKZRE L[#ATIE +r M FALIBRELEFRAHE *
(—)ALIB B fTE {E/R 4218 » FEHT L !
(Z)EN7E linkE ZE 4 undefined symbols 1A E + B main: §
BEFIRALBETEAEXZGRNEN - HT R - IR
Pl F A :

fill : $ALINK 1234.088 ! TE#E
EREN 1234.088 +1234.08B8
SALINK t1234.088 ' &

FHundefined ffjsymbol B VMS fJsystem subroutine -+ FHH
Avalonss Al AR o

(=) Multiple defined symbol
Evﬂx_ FAEME AR object file WPl linkfE—# » (E® E 4

13

_—

g Im B o [VAX [object Library M 7ENIGEER BB - BIA
—EHELEE o § — ik [E B ER S TR — &8 f) subroutine
MEr FREBSERE - ATLIEMNME R Fortrand 6 — &1
fj subroutine R —{HiE3d + &K renamets !

(F9) AlinkeriZ Z R HZIF ¢ JLIBRARYJ: /INCLUDE=mode
7EVAX: $LINK AAA,BEB/LIB | #§AAA.objERBBB.OLB(FE A B ##!
{EfEAvalon HIAE] & F:

$ALTNK AAA,BBB.BSLB ! {§AAA.0B88E1BBE.8SLB(R X HEE

U~ {HBIBRATHRE Z 8850 ¢

o5 g B TR 2 85 34 W Al Avalon/d B4R fit) RX88 bebugger-e {E
RAREAEDBBEMAMRIT » A& compile BFIMA /LINES [:ER
HBBLRMITELERRTES oW 2 B2 R % A T /D_LINESH) % 12
I - LD MEMABRTEFEHERE COMMENT i A# COMPILE (
2 B fE VAX Fortran H{FH)-e
& - program AAA

g This is a comment line!

PRINT*, This will not be printed out unless you

D *USE /D_LINES qualifier
Do I=1,n
Enddo

.........

$AFOR AAA $FOR AAA
$ALINK BRAA =78 $LINK AAA
$RUN AAA $RUN ARAL

BiCID B % —FIMprintA B ABENH - T4k R 5% 2 — (@ comment ©
EA :

$§ AFOR/D LINES AAA $ FOR/D LINES AAA
$ ALINK ARA B¢ $ LINK ARAR
£ RUN AAR SRUN ARR

Blprint AYEA B NG #ED L 1!

14

tREAFEVAX MAENES FEYREASMEDR - WREFF A §]
debugger {H 42 » BusE T T LIk » B LLII0E & 28 AT !

DT 2 —SARITIESEERSTRURNBERAR

(—) Accelerator system error number XX (XX BEEH=E)
MRS AHER AR (system configuration) - FRWE
F& N swap file permissions!

(.) ¥SYSTEM-F-ACCVIO,access violatiom,....
HEERTATESEE FRLETHBERRBEMN R
—ERERTENT (interface call) o AHEEE R
HIENLG RN EHETER SR ESILE - ZA—E
AHBRB AR RARMER - I RAvalony A EM °

(=) RACIP-F-TERM,access fault at PC 001908

SACIP-F-TERM,numeric resuit error at PC 001862
ERESSEEEY R o numeric result error 5 — fiE T8
RPN ETR WERS format HEWBRE LN T
i Rx88 debugger #f D Lines B BARMRIEK ° i access fault
HEEEXRXEE TN - HEASEEMEREAE » THA
/CHECK=BOUNDS B ¥4 ;E R A M MBI AE ©

(P9) syntax error in format
RPAPEEXASER T OSSN format & » 10 ¢

10 Format (1x,F<m>.<n>)
=% | afor$visetup(...)i@{@ subroutine Ax B b O] 5 R By
BEAESEHRE -
() Open failure
= B S open file page quota 52 o INESBFEE
f FEvax A @{%# open file page gquota -+ ¥ 5§ system
manager§ page quotafiff » LIS M8 o

(75) Fortran run-time error :subscript out of range for“ iarray ”
Subscrip was -1 at line 2434 in subrl
&SYSTEM-F-SUBRNG,arithmetric trap,subscrip out of range

3 B 7 Bl /CHECK=BOUNDS /B F e H B Z & » A T

15

ff1 array referencec FFID Lines SRR FERMIM T
c AR ASIH TR coto loop(IMEIAAARAE) ©
(£)3 fth 7 & FR AR B M VAX Fortran—i#% °

IV NEBEREELL

(—)O[SE#H acs acip P HEELE —{@ profile i ¥ T RX88 gL
&1k profile [o profilerf #§ & & 0 M & — B 72 3 A A
LR - A RECE RN EANRERX > MEERARN
W -

(C)$RZReT[{# F /Xoptions=479 MNBHAELEFRNATE!

(Z)ZF# A Avalon £ BRI {0 R W W (F] Y vaccelerator
Operations Manual 4.1 H)

(P9)5 @ sys$qio RE M AEER » THAIFN acs$qio HEM
oMM BEEARE LT ARERNEA

(AIEMESRTS2EFHE p3-11 & p3-37c

16

i

=k EME EEINLE T Avalon 24 F i EMH Vaccelerator AP/30
MERMERFERASE DAERTREARTREGER M —LHE
o FlyEy — KRR MEREIFELRT T - hEFZREREMR
i Vaccelerator Operations Manual hGREE » B —PFEET R
cHEAMESEERE THREBENEE MEFFHEA Vaccel-
erator Operations Manual P¥giE A% W BE » B§B system manager

ks REMAEENERHARLFLEM -

17

VALLELERATOR F1P/30
/11T

The VACCELERATOR AP/30-more than twice the power of a VAX 8800!

The Avalon VACCELERATOR Model AP/30 combines VMS and RISC in a singie slot application accelera-
tar for VAX and MicroVAX computer systerns, The AP/30 runs compute—bound apgplication programs 15 times
faster than a MicroVAX Il (15 MVUPs). in most cases, programs written in Fortran, C, or Pascal can be re-
compiled and run on the AP/30 without modification. Most WYMS and Ultrix system services and run-time
libraries are supported. Application file /O and other host services are processed transparently by the AP/20
througn Avalon’s proprietary Central Interface Pragram (ACIP) that runs on the WA,

VACCELERATOR PERFORMANCE

ON DR LABS CPU2 BENCHMARK SUITE
Relative to VAX/VMS Family

14 - (MicraVAX Il = 1.0 MVUP)
12
M
y 10
U 8
P
s ©
4 ot
2 -
0 JEsl | B S B ==
' "UVAX VAX pVAX VAX | VAX aVAX

APiZD B800 3BQO BER0 3500 AP0 TBES 7ad Il
The grach above degicts pefornance an the CPUZ suite of 34 kanchmark grograms, as
reported oy Digital Review, Octobear, 1989,

Tha table above shows AP/20 perlarmance relative to the MicraVAX |l on a series of
standard synthelic benchmarks.

18

VACCELERATOR AP/30 HARDWARE

RISC

The VACCELERATOR APi30 is
based an state—of-the—art He-
duced Instruction Set Computer
[BRISC) microprocassor technol-
ogy. RISC is known to provide
superiar performance at low cost
tor applications written in high-
level languages.

.:.
-t

: A PHJI Hardware' Féff ;

= 32KE 4-wa1_.r set—assumanma: il
- instructionn dn-l:ldamtcal:haﬁ
straamlngreniml b

- Up to B4MB main man*ury— i

‘accessto. VA}(memurg,r'anﬁﬁ.
‘peripheral devices:

———

VACCELERATOR CPU

The AP/30 is based on the
Maotorola MCBB100 RISG micro-
processor. Operating at 20MHz,
the MC88100 executes most
instructions in & single cycle. The
integral floating—point pracesseor
contains pipelined adder and
multiplier units that can operate in
parallel yielging peak perfarm-
ance of 20 Mflops (32—bit
floating-paint) and 10 Mfiops
ig4=bit floating—paoint), speeds

| previcusly attainable only through
i specialized array processors,

| With shared access to a large set
of general purpase regisiers,
floating—point operations ara
executed efficiently with no data
mevement ar control latency.

AP/30 HARDWARE BLOCK DIAGRAM

VACCELERATOR CMMU

The AP/30 uses multiple Motaralza
MC88200 Cache Memory Man-
agement Units (CMMUs) to pro-
vide virtual memory access and
nigh=speed cache for both in-
structions anc data. Each CMMU
is 16KB in size, and is 4—-Way Sat
Associative, Write=3ack in opera-
tion. The CMMU provides appli-
cation programs with access to 1
Gbyte of virtual address space,
with demand paging.

VACCELERATOR Memary
Main memory is composed of
4MB—64MB of 100ns DRAM.
Memory is accessed only when
instructions or data are not found
in the cache. In such instances.
memary words are loaded into
cache 16 bytes at a time. This

19

multi—word refill increaseas the
likelinood that subsequent in-
struction/data referances will be
found in the cache. Memaory is
canfigured with surface mount
DRAM devices for up to 20MB in
a single slot

Q-bus/Unibus Interface

The AP/30 can access VAX
memaory and Q—ous/Unibus
peripheral devices via high-speed
DMA. O~bus biock mode is
supported. VAX memary may be
shared by AP/30 applications as
a means of multi-processor
communication.

m

VACCELERATOR AP/30 SOFTWARE

VACCELERATOR Software
The VACCELERATOR AP/30is
suppored by a sophisticated set
of development and operational
software. Development software
enables applications o be
recompiled for the AR/30 with a
mirimum of effort, retaining the
user's familiar VMS or Ultrix envi-
renment. Cperational software
provides run-time transparency
to applications running on the
VACCELERATOR that reguire
access to VAX files. devices, ar
system servicas.

Development Tools
The AP/30 Development Scft-
ware suite consists of Fortran, C,

and Pascal compilers, assembler/

linker, debugger, and execution
profiler. All Avalon compilers affer
extansive state—ci=the—art global
aptimization.

Compilers

The Avalon Fortran compiler is
full ANSI=1977 compatible, and
supparts most VMS Foriran
extensicns. The Avalon C com-
piler is K&R compliant, and
supports most VMS extensions.
The Avalon Pascal compiler is
ANSIISO compliant.

Assembler/Linker/Debugger
The Avalon Assembler enables
user intervention at the assembily
language level for special pur-
pose algorithm optimization. The
linker follows WMS and Ultrix
usage canventions. A symbaolic
debugger is provided for AP30
specific debugging.

Execution Profiler

The Avalan execution Profiler
provides a subroutine-by-subrou-
tine analysis of execution time as

AP/30 SOFTWARE BLOCK DIAGRAM

VACCELERATOR sottware handles all cammunication between the VACCELERATOS
and 1he hast VAKX, No special programming is required o implement data transfers, syn-
chronization, pragram loading, interrupt sesponse, peripheral 13 and other similar tasks,

a percentage of averall time,
Further, instruction level prafiling
is available for assembly lan-
guage program optimization.

Operational Software

The Avalon Operational Software
suite consists of an AP/30
Remote Kernel, Device Driver,
and VAX resident Avalon Ceniral
Interface Program with support
for system services.

Remote Kernel

The Remote Kemel supports ap-
plication execution on the AP/30
by managing memory allocatian,
demand paging, interrupt han-
dling, and other necessary func-
tions. It interfaces with the ACIP
on the VAX through message
passing DMA.,

20

 ACIP

The Avalon Central Interface
Program (ACIP) executes an the
VAX and transparently performs
I/D ang system service requests
on behalf of the VACCELERA-
TOR. Through the ACIP, user an-
plications running on the AP/30
appear to be running undar the
host operating system: VMS,
Ultrix, or Unix,

System Services and
Run—Time Libraries

An extensive set of VMS and
Ultrix system services and
run—time libraries is provided,
enabling applications referencing
these services and routines to
run without change on the AP/30,

VACCELERATOR AP/30 SPECIFICATIONS

FERFORMANCE

Dhrystones (Rev 1.1):

37,000 Dhrystones
Whetstones (SP):

15,300 Kwips
Whetstones (DP):

7.300 Kwips

Linpack (SP): 2.7 Mflops
Linpack (DP): 1.4 Mflops
DR Labs CPU2: 15 MVUPs
Peak MIPS Rating:

26 (MicroVAX |l =1)
Application MIPS Rating:
15 (MicroVAX Il = 1)

Peak Mflops Rating: 20
(32-bit floating—point)
Peak Mflops Rating: 10
(64—bit floating—point)

AVALON

Avalon Computer Systems, Inc.

510 Castille Straet

Santa Barbara, CA 93101
Telephone: (805)865-8559
FAX: (805)965-9723

HARDWARE

CPU: Motorola MC28100,
with integral FPU,
20MHz clock rate

CMMU: Motorola MC88200,
16KB, 4-Way
Set—Asscciative,
Burst—Copyback

Memory: 4MB—64MB
100ns DRAM

DMA: 22-bit address,
G—-bus/Unibus access
—=bus block
mode supported

Size: Single Q-busQuad/
Unibus Hex slot

Power: 3.9 amps @5vdc

Bus Loads: 1

Specficattons subject to change without motics.,
WA, MicroWaX, VS, Ultrix, O—bus, Undbus, are
trademarks of Digital Equipment Comparaticn, Link
is a rademark of ATAT.

VACCELERATOR and Avalon are trademarks of
Avalgn Computar Sysiems, ng.

& Avadon Computar Sysloms 1988, 1589, 1980

21

SOFTWARE

Operating Systems

Supported:
VMS: Version 4.4 or
later
Ultrix: All Versions
Unix: bsd 4.2, 43
Languages: Fortran—77
including VMS & Mil-5td
1753 extensions,
C, Pascal

Software Tools: Assem-
bler/Linker, Debugger,
Program Execution
Profiler, Remote Kernel,
Avalon Central Interface
Program (ACIP}

s =, M8 el s

SYSTEM INTEGRATION

RISC Engine
Revs VMS
Applications

by John A. Carbaone

and Tom Harvey,

Avalon Computer Systems
Glendale, CA

Can VAX integrators gain
the mainframe-level
performance of RISC
while maintaining VMS
compartibiliry?

A board-level solution
answers: ‘‘Yes!”’

system mtegrators get closer to the goal of mainframe

speed without mainframe price. Compute-intznsive ap-
plications such as signal and image processing, gzophysical
analysis, graphics, and simulation will be the first (o benefit.
These all demand fast integer and floating-point processing
speed, large memory, high-level language compilers, and a
fricndly user interface.

One of the first examples of a RISC-based attached processor
board is the Vacceleraror APF30 from Avalon. The Vaccelerator
AP0 operates ina VAX or MicrdVAX computer system, and
delivers real applicagon performance of 15 MVUP (MicraVaX
I Units of Performance)—more than twice that of Digitl Eguip-
ment Corp.'s (Maynard, MA) high-end VAX 8800, Key o the
Vaceelerator AP/30 design strategy is application-transparent
operanon. [t generally can recompile and nm existing Fortran, C,
or Pascal code without modifications. Under VM, the Yac-
celerator AP0 supports virmaily all Foriran extensions, system
services, and run-time libranes.

Clearly, software has become a prime consideration for those
migrating 1o RISC. While RISC workstations are available, they
may entail a sizable software retooling task. For its part, DEC
has released a RISC-based worksmation syst2m, bugitis not avail-
able with VMS. Here, an attached processor such as the Avalon
design can represent a favorable alternative,

A 5 RISC processors emerge on board-level subsystems,

Notan Array Processor

Naturally, if an application is composed solely of microended
VECIOT Operanons, an array processor easily provides a dramatic
execution boost. But if an application should contain as litte as
10% of “other code,” which the array processor cannot handle ef-
ficiently, the application will not perform nearly as well, The
AFPr30 is not an array processor, but a fast scalar processor that
outperforms array procassors on most scientific applications.
Prior o the svailability of RISC processors, an arreEy processor
could outperfiorm a scalar processor on any application with ower
75 % vector content. This is because it was virmually impossible o
find a comparably priced scalar systemn that could perform better
than four to five times a MicroVAX II. Now, with RISC
technology delivering more than [0 times the performance ofa
MicrovAX 11, an application would have to contain well over

90 % vecwor content before a RISC sealar processor could be

outperformed {Table 1a}. Most scientific andengineering

applications contain berwesn 40% and 75 % vector content,
with very few over 0%

Based on the Mowrola {Tempe, AZ) 38000, the Avalon
Vaccelerator AP/30 achieves 15 dmes the performance of a
MicrovVAX I on real-world compute-bound applications.

This measurement represents tol application perfor-
mance, not just performance cn certain parts of the pro-
gram. MicroVA X IT users can expect to see their en-

tire application run 15 tmes faser. (Thble 1b provides a

cross section of relevant benchmark data.)
The Vaccelerator AP/30 combines the MCE3100
RISC CPU and MC88200 Cache and Memory
Management Unit (CMMLUY). The 88000 (82100 and

SYSTEM INTEGRATION

: cPU INSTRLUCTION i
v | wTEGER UNT [Ny :
t | FruMT AP0 :
i |, AEGISTER FILE MEMGEY | :
' + SEQUEMCER OATA 4.64 MBYTES | -
't |- mETRUCTION | e
i | PiPELINE sil :
- = DATA PIPELIKE !
oMA :
' INTERFACE '
Py ! [

4"\ O BUS UMBUS I)

WaX PERIPHERAL

o VAY
ol MEMORY DEVICES

Figurs 1: Avalon’s Vaceelerator AP/30 combines the
MCEB100 RISC CPU and MCB8200 Cache and Memory
Managament Unit (CMMU). Consisting of processar,
memory; and bus interfoce connected vic several high-
speed 32-bitbusas, the attached processor board's CPU
is fed by instruction ond data coche memories, providing
two-cycle accass aver 90% af the timea.

#8200 collectively) architecture has several key advantages over
other RISC implementations: cache coherency, multiprocessing
support, a scalable architecture, built-in fault-tolerant
capabilities, and the integration of floating-point and integer
funcoons on the CPL chip. A three-chip set, MC28100 CPL,
MCEE200 Instructon CMMU, and MCEE200 Data CMMU—
plus memory—is all that's required for a complet implemen-
tation. Consisting of processor, memory, and bus interface
connectad via several high-speed 32-hit buses, the anached pro-
cessor board’s CPU is fed by instruction and data cache
mernories, providing single-cycle access over 20% of the time
(Figure 1). Internal to the CPU are 32 32-hit general-purpose
registers, from which all operands are accessed. Inthe design of
the AP/30, a balance 1s achieved among the memory higrarchy of
register, cache, and main memory.

As 15 typical in BISC systams, all operations are performed on
data in one of the general-purpose registers. This data has to be
loaded into the register prior o the operation. The compiler tries
i mnaximise the use of a given dam element once it is loaded into
a register, to avoid having to store it and later reload it for another
operation. However, since it is not always posaible to avoid loads
and stores, the performance characteristics of these operations
directly influence system performance (Table 1c). Loads from
cache ke only two clock cycles o complete; thus the loaded data
15 not available to the very next instruction. This latency can be
used by instructions that do not require the data just loaded, if
such instructions are available. If not, a scoreboard hold occurs
and a cycle is lost, Compiler efficiency determines how often this
"load-delay-slot” can be filled, avoiding the no-op.

In RISC implementations, serious delays are encountered
in the case of a cache miss. This is when the data required to
be loaded intoa register is not already in cache memory, and must
be ferched from main memory, While data can be loaded from
cache in two cycles, loading data from main memory takes six
cycles, The AP/30 has a cache-burst refill feanure, though, that
loads into cache not only the data itern that was referenced in the

load instruction, but also the next three 32-bit words from
memory—atonly one clock cycle per word.

This is very effective since most memory referances are se-
quential for at least four words. This means thatif word N is
needed by the program, chances are good that it will soon need
words N+1, N+2, and N+3. Rather than meur a cache miss on
all four—ar a cost of six cycles each—the burst refill avoids cache
misses on the references to N+1, N+2, and N+3, since they will
be in the cache when referenced. The AP/30 uses this feature for
both data and instructions, since instructions can cache-miss
when necded as well,

Instruction and data caches cach comprise 16-Kbyte, four-way
associative memory. Up o 32 Kbyies each of instruction and/or
data cache can be configured on the AP0 Also, the AP0 pro-
vides demand-paged virual memory management and support
for mulbprocessor configurations,

The AP/30 can accommodate from § Mbyies of main memory
in a single slot; up w0 64 Mbytes in two slots, This memory is saf-
ficient for most scientific and engineering applications. Demand-
paged virmal memory is also supported, enabling the AP/30 1o
handle programs of any size up to | Ghyte. The amount of main
memory configured affects performance, since demand paging
from disk is substantially slower than main memory references.
As with the VAX, a user must make the cost/performance rade-
off of how much memory to configure on the svstem.

AP/30 memory is based on |-Mbit DRAMSs with I00-nsec oY=
cle ome and nmble mode access. The AP0 memory design can
accomumodate 4-Mbit DRAMS as well. Though they now incur a
premium price, these 4-Mbit DRAMSs will become standard
around year’s end as prices drop closer to [-Mbit parts on a cost-
per-bit basis, according to industry projections. With 4-Mhbie
DRAMS, the AP/30 can accommodate 64 Mbyies of local
memory inatwo=slot Q-hus board set. The AP/30 memary bus
sUpports @ peak data bandwidth of 30 Mbyies/sec, and a sustained
rate of 35 Mntes/sec,

The AP/3s large memory capacity enables an entire applics-
tion process to load and run with no shuffling of data or com-
mands back and forth from the host. The only communicanion re-
guired with tee host is when the application reguests I'O or some
other operating system service o be performed. For compute-
bound applications, this is extremely infrequent. Even though in-
frequent this interaction is perfo rmed via block-mode DMA
from the AP/30.

: AP0
‘| apPucaTion | ! Fasmanmeaneraaaas
FROGRAM || : [+
: Bl HCIP
T & :
:E‘S%E : ' B | vusuLtA

/ H
e TR R T MR- |

Figure 2: The AP/J0 gives users the software they need to
maximize the availoble processing power. Motorole's
88000 is suppeorted by optimizing compilers. Avalon’s
Cantral Interfoce Program (ACIP) provides transparent
OS5 service access to applications running on tha AP/30. A
lecal operating system, the Remote Kernel, handlas all
application systam sarvice requests that would narmally
(if the application were running en an unaided YAX) be
handled by YMS.

23

SYSTEM INTEGRATION

To interface with the host, the Vaccelerator AP/30 utilizes the
WaX Unibus or MicroVaX Q-bus. The AP/30 has 2 microcoded
state machine that controls bus access, and can become bus
master and perform block-mode DMA. As bus master, the
AP/30 can access (J-bus or Unibus peripheral devices directly.
Ordinanly, these devices are accessad via the VAX, through
Awalon’s proprietary interface software, As bus master, the AP30
can directly access VAX private memory; a region of VAX
memory can be mapped asa shared global region, accessible by
any number of Vaccelerators as well as application programs run-
ning on the VA, This is useful in multiprocessing applications
int which muitiple Vacesierators work on different parts of the
same problem, with a host VAX task providing synchronization
and overall system control.

The AP/30 is fabricated almost exclusively with surface-mount
technology, with low-profile memory expansion daughterboard
packaging that meets ()-bus backplane spacing requirements in
MicroVAX I systems. Surface-mount echnology also enables ef-
ficient and accurate automatic machine assembly of AP/30
boards, eliminating assembly errors that frequently occur with
DIPs.

Making the Software Connection

Sophisticated computer designers and users have come to realize
that high performance without the software to drive itis of litle
use. Especially true of RISC systems, good compiler techoology
is necessary o unlock the full capabilites of a CPU. With RISC
architectures, compilers must contend with allocation of large

SUBROUTINE EDGETHIN

IMPLICITINTEGER " 2(A—Y)
INCLUDE "TRACKERDATA.INC*
INCLUDE 'IMAGEDATAINC'

integer® 2 x1(B), y1(B) ldirection templates

dataxi 01,110, -1,—1,-1/
datayl 1.10,-1.-1.-101

typa®, 'thresh = SOBEL threshOLD

OO 1200 LIME = 1, MLines
D00 1100 SAMP = 1, NFpeis

CNTMAG = SOBEL__ARRAY (SAMPLINE)
CNTDIR = GradientDirimg__ARRAY [SAMP, LINE)

OPPRIR = MOD{CNTDIR + 48) { oppdir =
180 degrees from CNTDIR
IF {OPPDIR) &g, 0)OFFOIA = 8

IFHCNTMAG It SOBEL__ThreshOLD) .or,

+ (REFLECT{SAMP +x1{CNTDIF),LINE +y1{CNTDIR))
GLONTMAG).or

+ (REFLECT{SAMP +xi{OppDIR),LINE +y1
{CppDiR)L.gt.CNTMAG)) THEN

GradientDirimg_ARFAY[SAMPLINE)=0
ENDIF

1100 CONTINUE

1200 CONTINUE

| n an image processing application running on the Vag-
celerator AP/30, 2 Sobel map and an imaga gradient are
generated and appiled to animage. The final step, the applica-
ticn of tha filtar to the imags, is reproduced in Fortran, exacty as
nun on the Microia X 1. WS Fortran exiensions are highlighted

120
10

Beating the MicroVAX at Its Own Game

DO M0 LINE = 1, MLines
DO 120 SAMP = 1, MNPixels

IF(GradientDirlmg__ARRAY(SAMPLINE) 2q 0)THEN
Edge_ ARAAY(SAMPLINE) = 0
ELSE
Edge__ARRAY{SAMPLINE) =255
ENDIF

CONTIMUE
CONTINUE

RETURN
END

INTEGER * 2 FUNCTION REFLECT(XY)

IMPLICIT INTEGER" 2(A-")
INCLUDE "IMAGEDATA.INC”

IF{x EQ.0) THEN
X=m2

ELSE IF (X. GT. NPixels) THEN
X = NPhels — 1

EMDIF

IF (Y. EQ. 0) THEN
Y=2

ELSE IF (Y. GT. NLINES) THEN
Y = NLINES - 1

ENDIF

REFLECT = SOBEL__ARRAY(xy)

RETURM
END

in boldface. These extensicns, as well as the rest of the code,
wers compiled and run on the AP0 withaut change; this pro-
gram ran in 035 sec on the Vaccelerator AF/30, over 17 times
faster than it mn on the MicroMAX |l

24

SYSTEM INTEGRATION

Figurs 3: Fors! The Biomechanics golf swing analysis
syitem, based ona MicroVAX with Yaccelerator AP20,
anables professional golf instructors to show propar
swing mechanics, using the student goifer’s own swing
and phy:ique as the model.

register sets, synthesis of complex operations from alimited set
of instructions, and pipeline interlocks (in some RISC designs),
and 4t the same o avoid unnecessary code expansion that can
adversely impact cache ualization.

Motorola's 83000 is supported by optimuizing compilers, in-
cluding a suite from Green Hills Software (Glendale, CA).
Together with Avalon's proprietary Central Interface Program
{ ACIPY, which provides mansparent operatng systeIm service ac-
cess o applications running on the AP0, these compilers han-
dle VAN VM5 applications “asis” (Figure 2).

Program development is best done on the VAKX, using familiar
editors, VAX compilers, and debugeers to get the program run-
ning. Or, users can start with an already operational application
program. Atthis point, the user recompiles the applicanon.

Recompiling often exposes incompatiblities between com-
pilers. DEC VAX, IBM. CDC, and Cray machines all have their
own idiosyneracies (called “extensions” by the vendor). Porting
code from one to the other usually requires “sanitizing ™ the code
to remove system-specific code and replace it either with new
system-specific code or with sysiem-independent (generic) code.
API30 compilers, however, are designed to be companble with
the DEC VAKX VMS, Fortran, and C compilers in most respects.
Virrnally all of the VMS extensions offer=d by DEC are sup-
ported by the AP0 comptlers. Compiler switches are also com-
patible, thus their use is familiar o VAX/VMS users,

This compatbility means that users only need to maintain one
version of source code, whether running therr gpplication on the

VA X alone or on the AP/30. This is a significant advantage over
other approaches that require program changes o run on new
hardware platforms,

Once the program is recompiled, the AP/30 Linker links it
with system libraries, The Linker is also compatible with the
VAX WMS Linker, making existing link statements and option
files compatible as well. The linking process produces an ex-
ecutable module that can be run with the standard VAX VMS
“Bun” command, just likea VAN application programis run,
The program is paged into A P/30 memory and begins exacuton
on the AP/30. Atthis point, the VAX is free o devote its full
resources to other tasks not using the AP/30, resulting in faster
response time for /'O applications.

To support the application’s needs while running on the AP/30,
a local operating system, called the Remote Kernel, handies all
application system service requests that would normaily (if the
application were running on an unaided VAX) be handled by
WMS. The Remote Kernel provides demand-paged virmual
memory allocation, processor exception trap handling, local nm-
time library routine execution, and remote service request pro-
tocol. This last function is atthe heart of the AP/307s ability to
provide a true ¥ MS envimnment for the application.

Handling Service Requests

Typical of service requests is the [/O operation, forexample a
READ. On most computer systems, READ cperatons are con-
verted into subroutine calls by the compiler, and linked with the
system’s run-time library prior to execution. The same is true of

SR
Ay p e
L
=T
Processor
Femani Armay Procesgor Spesdug
\sctor Appileation Spesdup v To Mch APfE
Gantend MicroWAX [ector Spendup
5 s d ol 15 °
75 dx Ly 15
0 10 10 15x
1% 2% 20 15x
] 100k 100 152
969 1000 1000 Ly
Banehmark WECmARLE [AP0 AFYH Spemdup
Dhrysones 1308 3T000 20879
5P Whetsiores 40000 15300000 16 28x
DP Whetsiones a24,000 500,000 1.7
5P Limpac 1168 MADPS A1IMAOPS 195
DP Linpack A0 MALOPS TEMFLORS 1778
Dhgital Review CPUR Suitz 3139 cac 539 ser 5
Image Processing Al s (L35 2 1786
[Usar Appiication)
¥-Ray Powger Difftaction 1 howr 10min dmn4dzec 60
(lIsar Appiication)
| e 7T ¢ Dee Retemncs Latancy by Tpeo
Sutmequent
M emary Ireftiml Latsney ‘Whan
Type Laiency Par Word Nosdad
CPU Regesters 0 a Al nstmctions
Cache 2 oycles (100 nsech doycles (100nsec) Notin regster
Man Memary E cycles (300 nsech Joypclas (100nsec) Cacha mmiss
Disk 0-50mees 5 pset e Iy e menu
Nagnenc Tape 2s8c 32 msec Anchived

SYSTEM INTEGRATION

the AP/30. The AP/30 compiler creates a call to the appropriae
READ uaility subroutine. When the application makes this call,
the AP/30 RTL subroutine, rather than interfacing directly with
an /O driver. constructs a command packet containing fuil infor-
mation about the data to be read. This packet is wrirten to the
ACIF, running on the VAX, via high-speed DMA. The ACIP in-
terprets the packet and constructs the appropriare YMS RTL call
and executes it. Thus, the 'O is acrually performed on the VAX,
using the standard YMS file structures. RMS, and device drivers,
This enables the application to remain unchanged, even down o
file naming, READ statement options, and so on.

Once the /O operation is complete, the ACTP indicates w the
Remnaote Kernel that the AP/30 may now DMA the requested da
and other informarion relevant to the REA D back to the usar’s
virtual address space in AP/30 memory. At this point, the ap-
plication contnues on the AP/30 undi the next ceczsion for it
request a service of the VAX,

The AP/30 awtomatically handles over 300 VMS system ser-
vices; more can be added as needed. Sometimes, users need to
call subroutines that canonly run onthe VAX {e.g., library
routines o which the user does nar have source code to recom-
pile, or device-dependent soutines for which the VAX driver soft-
ware must be used). Inthese mstances, the remone servics TegQuest
facility provides for construction of a user-defined subroutine in-
terface “wrapper’ that enables run-time access to any VAX-
resicent submutines from an application running on the AP/30.

I

Namrally, these routines will only run at VA speed, not AF/30
speed, and there will be some overhead. But if these rootines do
not represent the bulk of execution time, they can be accom-
modated easily by the AP/30,

Omce the application is running on the AP/30, the AP/30 Pro-
filer will show which subroutines are taking up the mast CPU
time. This can be used for application algorithm uning, if
desired, enabling the user to spend tme only on those routines
that represent significant apportunities for gain. For those who
likz to roll up their sleeves and really tune a program, the Profiler
will priwide an instruction count for each assembly language in-
struction executed. This exposes inner loops and enables alter-
nate coding technigues to be used with mezsurable results.

Currently, Yaceelerators are being used for a variety of applica-
tons. For example, Biomechanics, Inc, (Marieta, GA) uses the
Vaccelerator in a sophisticated 30 biomechanical analvsis system
(Figure 3). Applications include golfswing analysis and tram-
ing, weightlifting rraining, robotics, motor skill maining, and a
range of motion simtlation. ESD:

AVALON

Avalon Computer Systems
425 E. Colorado Sireet #710
Glendale, CA 91205
Phone: 818 247-2216
Fax: 818 246-7037

26

REPRINTED WITH PERMISSION ESD MAGAZINE 9/8% 1900 WEST SARK ORIVE SUME 200, WESTBCROUGH, MA 01581

	Image001.jpg
	Image002.jpg
	Image003.jpg
	Image004.jpg
	Image005.jpg
	Image006.jpg
	Image007.jpg
	Image008.jpg
	Image009.jpg
	Image010.jpg
	Image011.jpg
	Image012.jpg
	Image013.jpg
	Image014.jpg
	Image015.jpg
	Image016.jpg
	Image017.jpg
	Image018.jpg
	Image019.jpg
	Image020.jpg
	Image021.jpg
	Image022.jpg
	Image023.jpg
	Image024.jpg
	Image025.jpg
	Image026.jpg
	Image027.jpg
	Image028.jpg

